

PROVINCIAL DEPARTMENT OF EDUCATION NORTH WESTERN PROVINCE

THIRD TERM TEST - 2020 MATHEMATICS - I

Grade 10

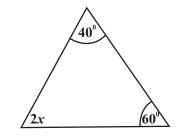
02 Hours

Name / Index No. :

• Answer all the questions on this paper it self.

• Each question in part A carries 2 marks and each question in part B carries 10 marks.

Part - A

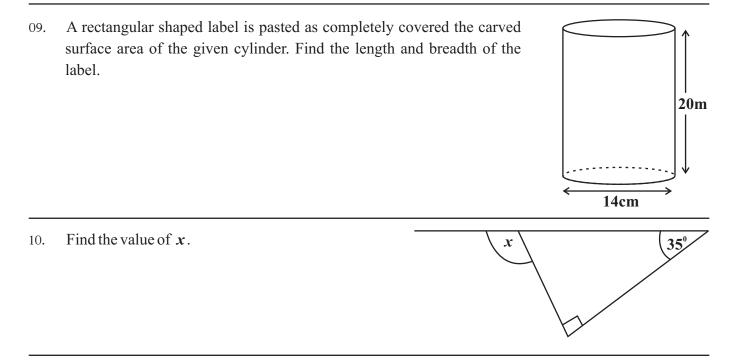

01. If $4.5 \times 4.5 = 20.25$, find the value of $\sqrt{20}$.

02. If five men work for three days to complete $\frac{1}{4}$ of a certain task, find the whole task in men days.

03. If the perimeter of the given sector is 25 cm and arc length is 11 cm, find it's radius.

04. Expand. $(2x + 3)^2$

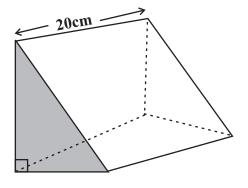
05. Find the value of x.

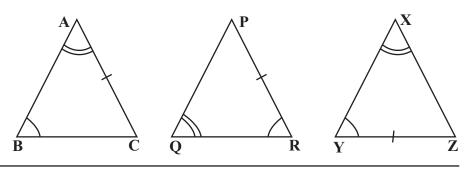


06. Write the set $A = \{x : x \text{ is an odd number } . 1 \le x \le 10\}$ by listing elements.

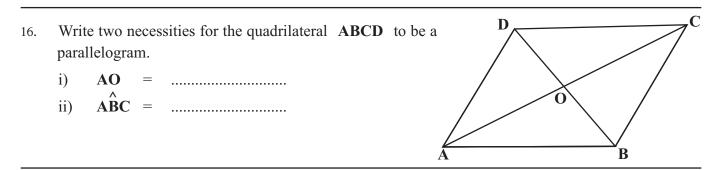
07. Solve. $\frac{8+x}{5} = 2$

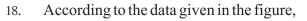
වෙම පුශ්ත පතු සියලුම යෞඛපාර්කයිත කුමවේද අනුගමනය කර්මින් යෞඛප අමාතපාංශයේ නිර්දේශ අනුව මුදුණය, පැකට් කිරීම හා බෙදාහැරීම සිදුකර් ඇත.

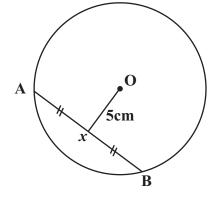

08. When importing vehicles, customs duty of **40%** of it's value should be paid. Find the amount has to be paid as duty when importing a vehicle worth of Rs. **450 000**.

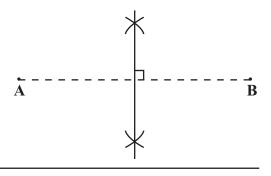

11. A and B are two mutually exclusive events. If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ find P(A | B).

12. Make 'a' as the subject of the formula, $v^2 = u^2 + 2as$


13. If the area of the shaded face of the prism given in the figure is 18 cm^2 . Find the volume of the prism.

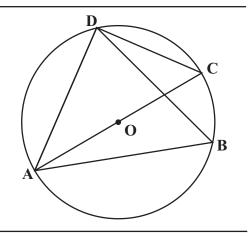

14. Select and write the pair of congruent triangles and write the case of congruency.


15. Find the equation of the straight line passes through the points (3, 10) and (0, 1).


17. Factorize. $x^2 + x - 20$

- i) Write the relationship between **AB** and **OX**.
- ii) If AX = OX, find the length of AB.

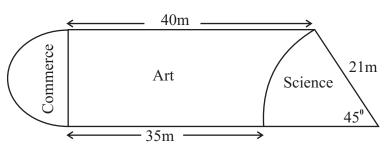
19. A and B are two points away from 10m each other. Using the knowledge of loci obtained the location of point P and Q which are equidistance to the points A and B and 6m away from the point A.



20. Write $10^{0.3010} = 2$ in logarithmic form.

- 21. According to the data given in the figure, find the value of \mathbf{ACB} .
 - C A (50) B
- 22. Find the time taken by a motor car which is travelling at the uniform speed of **60 kmh⁻¹** to travel the **150km**.
- 23. Find the L.C.M. of $6x^2$, $2xy^2$, $10y^2$

24. The mean of the deviation of a frequency distribution is 12.4 and it's assumed mean is 18. Find the actual mean of the frequency distribution.

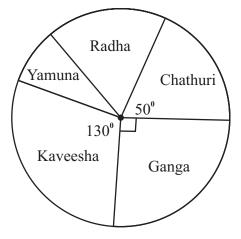

25. AC is a diameter of the given circle. If $\mathbf{D}\mathbf{A}\mathbf{C} = 52^{\circ}$. Find the value of $\mathbf{D}\mathbf{B}\mathbf{A}$.

Part - B

- (01) $\frac{1}{8}$ of the passengers came by a flight were Indians. $\frac{5}{14}$ of the remainders were Europeans. Remaining passengers are Sri Lankans.
 - (i) Write the number of Europeans as a fraction of total number of passengers.
 - (ii) Express the number of Sri Lankans as a fraction of total number of passengers.
 - (iii) $\frac{2}{3}$ of the Sri Lankans are women. If 90 Sri Lankan women came, find the total number of passengers came on this flight.
 - (iv) When entering to this country Rs. 8 000 is charged for a foreigner as visa fee. Find the total visa amount received from indians who arrived on this flight.

- (02) For an exhibition the way of separating the school premisses for the sections of Commerce, Art and Science is shown in the above figure.
 - (i) Find the length of the curved boundary of the semi-circular land area.

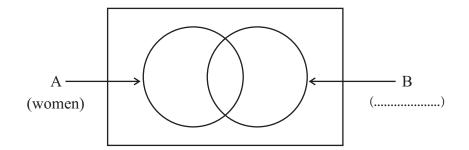
(ii) Find the perimeter of the exhibition land area.


- (iii) Find the area of the land separated for the science section.
- (iv) Find the area of the land separated for the art section.

(v) By separating the art and commerce sections, draw a road with the area of 28m² with measurements on the above figure.

- (03) A business institute that sells vehicles pays Rs. 6000 as rates for a quarter, in 2019. The local government authority charges 12% of the annual assessed value as rates.
 - (i) Find the annual assessed value of the business institute.
 - (ii) For the year 2020, the annual assessed value of the business institute is increased than the previous year by 10%. Find the annual assessed value of the business institute in 2020.

(iii) If 15% of discount was given for the tax as the result of paying the rates within the first quarter in 2020, find the total amount paid as rates by the business institute in both 2019 and 2020.


(04) Radha, Yamuna, Ganga, Kaveesha and Chathuri saved Rs. 2 coins and they put them in to a same till. A pie chart drawn to represent the number of coins put by each of them is given below.

- (i) If Radha puts twice of the number of coins put by Yamuna, find the angle of the sector relevant to Radha.
- (ii) If the number of coins put by Chathuri was 10, find the number of coins put by Yamuna.

- (iii) What is the total amount in the till.
- (iv) In the next day Rs 2 coins were put in to the till as Rs. 16 by Yamuna and Rs. 20 by Radha. Find the angle of the sector relevant to Chathuri in the pie chart drawn to represent the number of coins put by each of them on this day.

(05) The total number of employees in an institution is 50. 35 of them are women. In a certain day, ther were 25 people carring umbrellas and 6 of whom were men

(i) Name the set B.

(ii) Represent the above information in the venn diagram.

- (iii) Explain the set A B
- (iv) How many men did not bring umbrellas ?

(v) Find n(A B')

PROVINCIAL DEPARTMENT OF EDUCATION NORTH WESTERN PROVINCE

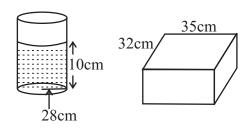
THIRD TERM TEST - 2020 MATHEMATICS - II

Grade 10

03 Hours 10 minutes

Name / Index No. :

- Answer 10 questions selecting five questions from Part A and five questions from Part B.
- Write relevant steps and correct units in answering the questions.
- Each questions carries 10 marks.


Part - A

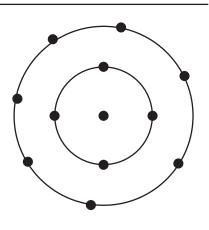
- (01) (a) The annual income of Mr. Sirisena is Rs. 1 400 000. From his income first Rs. 500 000 is tax free. On the second Rs. 500 000 a tax of 4% is charged and on the remaining amount a tax of 8% is charged. Find the total amount he should be paid as income tax.
 - (b) Find the total amount that Mr. Raheem has to pay to settle a loan in 2 years, if he borrowed Rs. 80 000 at an annual simple interest rate of 9%.
- (02) An incomplete table prepared to draw the graph of the function $y = 5 x^2$ is given below.

x	-3	-2	-1	0	1	2	3
У	-4	1	4		4	1	-4

- (i) Find the value of y when x = 0.
- (ii) Using the scale of 10 small divisions as one unit along the x axis and along the y axis draw the graph of the above function on a graph paper.
- (iii) Write the interval of values of x for which the function is dicreasing positively.
- (iv) Find the roots of the equation $5 x^2 = 0$
- (v) Write down the equation of the graph which is obtained when the above graph is shifted downwards by 2 units along the y axis.

(03) A cylindrical vessel of base radius 28 cm has been filled with water up to 10 cm height. The water volume in the cylinder is poured to the cuboidal shaped vessel shown in the figure.

B


r

- (i) Find the volume of water in the cylindrical vessel.
- (ii) Find the height of the water level of the cuboidal shaped vessel.
- (iii) After adding 360 ml of extra water amount to the above cuboidal shaped vessel the water amount in that vessel released by a pipe which flows water at the rate of 5 litres per minute. Find the time taken to empty the vessel completely.
- (04) (a) In a certain nursery, the price of a mango plant is Rs. 80 and the price of a guava plants is Rs. 50. From this nursery Samudra bought 20 number of mango and guava plants. For that she spent Rs. 1360. Build up two simultaneous equations by taking x as the number of mango plants and y as the number of number of guava plants bought by Samudra. By solving this pair of equations, find the number of mango and guava plant bought by Samudra separately.
 - (b) Solve the inequality 2x 3 < 7 and find the maximum integral value for x.
- (05) In the triangular lamina ABC, the length of BC is x cm. The length of AB is 2 cm more than the length of BC..
 - (i) Write the length of AB in terms of x.
 - (ii) If the area of the triangular lamina ABC is 24 cm², build up an quadratic equation in terms of x.
 - (iii) By solving the above equation find the length of BC.
 - (iv) Hence, find the length of AC.
- (06) Information on the number of frocks sold during a month in a certain baby care centre is given in the following table.

No. of frocks	4 - 8	9 - 13	14 - 18	19 - 23	24 - 28	29 - 33
No. of days	2	4	10	6	4	4

- (i) Write the modal class of the above distribution.
- (ii) Find the mean number of frocks sold in a day.
- (iii) If a profit of Rs. 180 is obtained on each frock sold, show that the expected minimum profit for the month is Rs. 91800.

- (07) The diagram given below shows, how Shareena placed flower pots in her garden. The flower pots are placed in a circular pattern as one pot in the middle, 4 pots in the first circle, 7 pots in the second circle.... etc.
 - (i) According to this pattern write the number of pots in the third circle.
 - (ii) In which progression that lies the numbers of pots placed according to this pattern.
 - (iii) If the flower pots were placed in ten circles, find the number of pots in the 10th circle using the formula.
 - (v) Find the total number of flower pots she has placed in this pattern.
- (08) Do the construction given below using a pair of compasses and a straight edge with a cm/mm scale.
 - (i) Construct the triangle ABC such that AB = 7cm, $BAC = 60^{\circ}$ and AC = 5cm.
 - (ii) Construct a parallel line to AB through C.
 - (iii) Construct the angle bisector of CÂB and mark the intersecting point of it and the above parallel line as D.
 - (iv) Construct the circle taking D ad the centre and DB as the radius. Then measure and write the length of DB.
- (09) In the triangle ABC, the value of the $BAC = 40^{\circ}$. The angular bisector of ABC and ACB meet at X. BXCY is a rhombus. By giving reasons find the value of BYC.

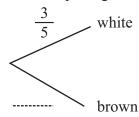
Х

(10) AB is the diameter of the given circle. The points P and Q are on the circle such that PB = BQ. The lines AB and PQ intersect at T.

Show that,

- (i) $\overrightarrow{QPB} = \overrightarrow{PAB}$
- (ii) AB <u>h</u> PQ
- (iii) By joining A and Q show that AP = AQ.
- (11) Pradeep who is standing at point C which is 12m away from foot (A) of vertical building AB, observes the top of the building at the angle of elevation of 40°. Draw a sketch diagram to represent the above information and draw the scale diagram using the scale of 1 : 200. Then find the height of the building. (Ignore the height of Pradeep.)

A


οX

O

В

- (12) There are 5 rabbits in a closed cage. 5 of them are white colour and the other 2 are brown colour. When this cage is opened by malindu one rabbit came out. Then Malindu caught that rabbit and put it to the cage and closed the cage. After that Rajitha came and opened the cage, then one rabbit came out again.
 - (i) Represent the sample space relevant to the above incident in a grid.
 - (ii) Find the probability of that 2 white rabbits came out in two occations.
 - (iii) In the grid, encircle the event that a brown rabbit came out in the first time and a white rabbit came out in the second time.
 - (iv) An incomplete tree diagram drawn to represent the event of a rabbit came out when opening the cage by Malindu is given below. Fill in the blank of it.

Malindu is opening the cage

(v) Copy the above tree diagram on to your answer script and extend it up to represent the event of a rabbit came out when opening the cage by Rajitha. Then find the probability of the event of a brown coloured rabbite is came out at least once.

ේසියලුම හිමිකම ඇද වයඹ පහත් අධිනාපන දෙස වයඹ පහත් අධිනාපන දෙස	නුම හිමිකම ඇවිරිය. / All Rights Reserved. චයශ පළාත් අධනාපන දෙපාර්තමේන්තුව Department of Provincial Education - NWP තෙවන වාර පරිකාණය - 10 -11 ලේහි - 2020 Third Term Test - Grade 10 -11 - 2020								
විෂයය Subject		විභාග අංකය Index No.							
විභාග ශාලාවෙන් පි	මටතට ගෙනයාම තහනම්. Not to be removed from the Exa	amination Hall.							
┼┼┼┼╂┼┼┼╂									
┼┼┼┼╂┼┼┼╂		┼┼╂┼┼┼┽╂┼┼┼╂┼┼┼┼╂┼┼┼┼╂┼┼┼┼╊┼┼┼┼							
┼┼┼┼╂┼┼┼╂		┼┼┠┼┼┼┼┼┼┟┼┼┼┼┟┼┼┼┠┼┼┼┼┼┠┼┼┼┼							
┼┼┼┼╂┼┼┼╂		┼┼╊┼┼┼┼┟┼┼╊┼┼┼╂┼┼┼╂┼┼┼╂┼┼┼┼╊┼┼┼							
┼┼┼┼╂┼┼┼╂			$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						
+++++++++++++++++++++++++++++++++++++++									
┼┼┼┼╂┼┼┼╂									
┼┼┼┼╂┼┼┼╂		┼┼╂┼┼┼┼┨┼┼┼┼┨┼┼┼┼┨┼┼┼┼┨┼┼┼┼	╂┼┼┼┼┨┼┼┼┼┠┼┼┼┼						
┼┼┼┼╂┼┼┼╂									
┼┼┼┼╂┼┼┼╂		┼┼╊┼┼┼┼╂┼┼┼╂┼┼┼┼╊┼┼┼┼╂┼┼┼┼╊┼┼┼┼	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$						
++++++++									
┼┼┼┼╂┼┼┼╂									
┼┼┼┼╂┼┼┼┨									
┼┼┼┼╂┼┼┼╂									
┼┼┼┼╂┼┼┼╂		┼┼╂┼┼┼┽╂┼┼┼╂┼┼┼┼╂┼┼┼┼╂┼┼┼┼╊┼┼┼┼							
┼┼┼┼╂┼┼┼╂		┼┼╊┼┼┼┽╊┼┼┼┼╊┼┼┼┼╊┼┼┼┼╄┼┼┼┼	╂┼┼┼╂┼┼┼┠┼┼┼┼						
┼┼┼┼╂┼┼┼╂			$\begin{array}{c} \\ \\ \\ \\ \end{array}$						
┼┼┼┼╂									
+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	╂┼┼┼╂┼┼┼╂┼┼┼┼						

THIRD TERM TEST - 2020

MATHEMATICS

ANSWER SHEET

	Paper I - Part A	All	SWE	N SH			
01.	4.5		02	19.	Correct points P & Q		02
	4.4 x 4.4 = 19.36	01			1g = 0.3010 or		02
02.	5 x 3 x 4	01			$\log_{10} 2 = 0.3010$		
	man days 60	01	02	21.			02
03.	$\frac{25 - 11}{2} = 7$ cm		02	21,	$AOB = 80^{\circ}$	01	02
	$\frac{2}{4x^2+12x+9}$		02	22.	$2 \frac{1}{2}$ Hours		02
	$x = 40^{\circ}$		02		150	01	
	$2x + 40^{\circ} + 60^{\circ} = 180^{\circ}$	01	02		60	01	02
06.	$A = \{1, 3, 5, 7, 9\}$		02		$30x^2y^2$		02
07.	8 + x = 10	01		24.	30.4	01	02
	x = 2	01	02	-	18 + 12.4	01	02
	40			25.	38°		02
08.	$\frac{40}{100}$ x 450 000	01					50
	Rs. 180 000	01	02	-	Donor I Dort D		
09.	Length = 44 cm	01			Paper - I - Part B		
	Width = 20cm	01	02	01.	(i) $\left(1 - \frac{1}{8}\right) \times \frac{5}{14}$	01	
10.	$x = 125^{\circ}$		02		$\frac{5}{16}$	01	02
	x = 90 + 35	01					
11.	$\frac{1}{2} + \frac{1}{2}$	01			(ii) $1 - \left(\frac{1}{8} + \frac{5}{16}\right)$	01	
	$\frac{\frac{1}{2}}{\frac{5}{6}} + \frac{1}{3}$	01	02		$1 - \frac{7}{16}$	01	
		01	02		9	01	03
12.	$a = \frac{v^2 - u^2}{2s}$		02		16		
13.	2s 18 x 20	01			(iii) $\frac{9}{16}$ of $\frac{2}{3} = \frac{3}{8}$	01	
15.	360cm ³	01	02		90 x $\frac{8}{3}$	01	
14.					240	01	03
14.	A. A. S	01 01	02				
15.			02		(iv) 240 of $\frac{1}{8} = 30$	01	
1.5.	-		02		$30 \ge 8000 = \text{Rs.} 240\ 000$	01	02
	$\frac{10-1}{3-0} = 3$	01					
16.	(i) OC	01					10
	(ii) ADC	01	02	02.	(i) $\frac{22}{7} \times 7$	01	
	(x+5)(x-4)		02		22m	01	02
18.	(i) AB L OX	01					
	(ii) 10cm	01	02		(ii) 139m		01

THIRD TERM TEST - 2020

MATHEMATICS

ANSWER SHEET

	1 22			05	(i) People who were carrying 01	
	(iii) $\frac{1}{8} \times \frac{22}{7} \times 21 \times 21$	01		05.	umbrellas	
	173.25m ²	01	02			
	(iv) $\frac{1}{2}$ x 14 (56 + 40)	01			$A \longrightarrow \begin{pmatrix} 16 & 19 & 6 \\ 19 & 6 \end{pmatrix} \leftarrow \begin{bmatrix} 19 & 01 \\ B & 6 \\ 01 \end{bmatrix}$	
	$\frac{2}{672m^2}$					04
	$498.75m^2$	01 01	03			
			0.5		(iii) {Women who brought umbrellas}	01
	(v) Draw the rectangularMark width of 2m	01	0.2		(iv) 7	02
	Mark width of 2m	01	02		(v) 16	02
			10			10
03.	(i) $6000 \text{ x } 4 = \text{Rs.} 24\ 000$	01			Paper - II - Part A	
	<u>24 000 x 100</u> 12	01				
	12 Rs. 200 000		02	01.	(a) 1 400 000 - 500 000	
		01	03		Rs. 900 000 01	
	(ii) $\frac{110}{100}$ x 200 000	01			$\frac{4}{100} \times 500\ 000$ 01	
	Rs. 220 000	01	02		Rs. 20 000 01	
	12				900 000 - 500 000	
	(iii) $\frac{12}{100}$ x 220 000	01			Rs. 400 000 01	
	Rs. 26 400	01			$\frac{8}{100}$ x 400 000	
	$\frac{85}{100}$ x 26 400	01			Rs. 32 000 01	
	Rs. 22 400	01			20 000 + 32 000	
	24 000 + 22 400 = Rs. 46 400	01	05		Rs. 52 000 01	06
			10		(b) $\frac{9}{100}$ x 80 000 x 2 02	
	(1) $\Gamma_{12}^{(1)} = 1.200 + 5 V_{2}$	0.1			Rs. 14 400 01	
04.		01	02		80 000 + 14 400	
	60° to Radha	01	02		Rs. 94 400 01	04
	(ii) $\frac{30 \times 10}{50}$	01				10
	6	01	02	02.	(i) 5	01
	360 x 10				(ii) Accurate axis 01	
	(iii) $\frac{500 \times 10}{50}$	01			Marking at least 6 points 01	
	72	01			Smooth curve 01	03
	$72 \ge 2 = Rs. 144$	01	03		(iii) in between 0 & 2.2	02
	(iv) $8 + 10 + 72 = 90$	01			(iv) -2.2 & 2.2	02
	$\frac{360 \times 10}{00}$	01			$(v) y = 3 - x^2$	02
	90 40°	01	03			10
		U 1	10			

THIRD TERM TEST - 2020

MATHEMATICS

ANSWER SHEET

		Г				1		
03.	(i)	$\frac{22}{7}$ x 28 x 28 x 10	01		06.	(i) 14 - 18		01
		$^{\prime}$ 24 640 cm ³	01	02		(ii) 6, 11, 16, 21, 26, 31	01	
				02		12, 44, 160, 126, 104, 124	01	
	(ii)	$\frac{22}{7}$ x 28 x 28 x 10 = 35 x 32 x h	02			$\sum fx = 570$	01	
		$h = \frac{22 \times 28 \times 28 \times 10 \times 7}{35 \times 32}$	01			570 30 19	01 01	05
							01	03
		h = 22cm	01	04		(iii) $4 \times 2 + 9 \times 4 + 14 \times 10 + 19 \times 6$		
	(iii)	25 000 cm ³	01			+ 24 x 4 + 29 x 4	01	
	. ,	25 <i>l</i>	02			8 + 36 + 140 + 114 + 96 + 116 510	01 01	
		$\frac{25}{5}$ = minutes 5	01	0.4		510 x 180	01	04
		$\frac{1}{5}$ - minutes 5	01	04		Rs. 91 800	01	04
				10				10
04.	(a)	x + y = 20	01			Derrer II. Derré D		
		80x + 50y = 1360	01			Paper - II - Part B		
		50x + 50y = 1000	01		07.	(i) 10		01
		30x = 360	01			(ii) Arithmetic Progressions		01
		x = 12 $y = 8$	01			(iii) $T_n = a + (n - 1) d$	01	
		-	01			$T_{10} = 4 + 9 \times 3$	01	
		No. of mango plants = 12 No. of guava plants = 8	01	07		= 31	01	03
	(b)	2 <i>x</i> < 10	01			(iv) $S_n = \frac{n}{2} (a+l)$	01	
		<i>x</i> < 5	01			$=\frac{10}{2}(4+31)$	01	
		4	01	03		$= 5 \times 35$	01	
				10		= 175	01	
05.	(i)	<i>x</i> - 2		01		175 + 1 = 176	01	05
	(ii)	$\frac{1}{2} x (x - 2) = 24$		02				10
	(iii)	$x^2 - 2x - 48 = 0$	01		08.	(i) AB or AC	01	
		(x - 8) (x + 6) = 0	01			60 [°] construction	01	
		x = 8 or x = -6	01			construction	01	03
		BC = 8cm	01	04		(ii) Accurate construction		02
	(iv)	AB = 6cm	01				- ·	
		$AC^2 = 8^2 + 6^2$	01			(iii) Angular Bisector	02	
		AC = 10cm	01	03		to D	01	03
				10		(iv) Circle	01	
						4.3 ± 0.1	01	02
								10
				(0)		1		

THIRD TERM TEST - 2020

MATHEMATICS

ANSWER SHEET

09. BX = CX (Data) 01 $x\hat{B}C - X\hat{C}B$ 01 $2x X\hat{B}C = 2x X\hat{C}B$ 01 $A\hat{B}C = A\hat{C}B$ 01 $A\hat{B}C = A\hat{C}B$ 01 $A\hat{B}C = A\hat{C}B = 70^{\circ}$ 01 $B\hat{X}C = 3C^{\circ} - 70^{\circ}$ 01 $B\hat{X}C = 180^{\circ} - 70^{\circ}$ 01 $B\hat{X}C = 180^{\circ} - 70^{\circ}$ 01 $B\hat{X}C = 10^{\circ}$ 01 $B\hat{X}C = 9\hat{Y}C$ 01 $B\hat{X}C = 10^{\circ}$ 01 $A\hat{B}X + X\hat{Y}B = 90^{\circ}$ 01 $A\hat{B}X + P\hat{A}B = 90^{\circ}$ (Auges in the sens eigenet) 01 $A\hat{X}X + P\hat{A}B = 90^{\circ}$ 01 $A\hat{X}X + P\hat{A}S = 90^{\circ}$ 01 $A\hat{X}X + P\hat{A}S = 90^{\circ}$ 01 $A\hat{X}X + P\hat{A}S = 90^{\circ}$ 01 $A\hat{X}P = A\hat{Q}$ 02 40° 01 APX = AQ 04 11. Rough diagram 02 40° 01 $AC \ scale \ length$ 01 $5.2x \times 2$ 01 10.4m + 0.2 01 10.4m +								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	09.		01		12.	(i) Delation		02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			01					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			01			$\mathbf{B}_2 - \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ABC = ACB	01			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\hat{ABC} + \hat{ACB} + 40^{\circ} = 180^{\circ}$	01			$W_i + \times \times \times \times$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ABC = ACB = 70^{\circ}$	01			$\mathbf{W}_1 \mathbf{W}_2 \mathbf{W}_3 \mathbf{D}_1 \mathbf{D}_2 \mathbf{\nabla}$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\hat{XBC} = \hat{XCB} = 35^{\circ}$	01			(ii) $\frac{9}{25}$		02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$BXC = 180^{\circ} - 70^{\circ}$	01					01
IO (i) $P\hat{Q}B = P\hat{A}B$ (Agles in the same segment) 01 01 02 10. (i) $P\hat{Q}B = Q\hat{P}B$ (PQB isosceles triangle) 01 02 $3 \\ \frac{2}{5} \\ W \\ \frac{2}{5} \\ B \\ \frac{3}{5} \\ B $		$\hat{BXC} = \hat{BYC}$	01					01
IO (i) $P\hat{Q}B = P\hat{A}B$ (Agles in the same segment) 01 01 02 10. (i) $P\hat{Q}B = Q\hat{P}B$ (PQB isosceles triangle) 01 02 $3 \\ \frac{2}{5} \\ W \\ \frac{2}{5} \\ B \\ \frac{3}{5} \\ B $		$BYC = 110^{\circ}$	01			(iv) $\frac{2}{5}$		01
10. (i) $\hat{PQB} = \hat{PAB}$ (Angles in the same segment) 01 01 02 $\hat{QPB} = \hat{PAB}$ (Axiom) 01 01 02 02 (ii) $A\hat{PB} = 90^{\circ}$ (Angles in the semi circle) 01 02 01 $A\hat{PX} + X\hat{PB} = 90^{\circ}$ 01 01 02 02 04 $A\hat{PX} + P\hat{AX} = 90^{\circ}$ 01 04 16 25 02 04 (iii) In the APX and AQX 01 04 10 10 10 10 AAB \perp PQ 04 04 04 10 10 10 10 11. Rough diagram 02 04 04 10 10 10 11. Rough diagram 02 04 10 10 10 10 10 10 11. Rough diagram 02 04 10 10 10 10 10 10 11. Rough diagram 02 01 10 10 10 10 10 10 10 10 10 10 10 10				10		Kajitna (a) Malindu		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>				$\frac{3}{5}$ W		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.						02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			01					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\overrightarrow{QPB} = \overrightarrow{PAB}$ (Axiom)		02				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(ii) $A\hat{P}B = 90^{\circ}$ (Angles in the semi circle)	01					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$A\mathbf{\hat{P}}X + X\mathbf{\hat{P}}B = 90^{\circ}$	01			5	02	04
AB \perp PQ04(iii) In the APX and AQX PX = XQ (because AB \perp PQ) 01 AX = AX (common side) 01 A $\hat{X}P = A\hat{X}Q = 90^{\circ}$ 01 APX AQX (S.A.S) 01 AP = AQ04 1011. Rough diagram Draw AC = 6cm 40° 02 01 Draw AB \perp AC Triangle AC scale length $5.2 cm \pm 0.1$ $5.2 cm \pm 0.1$ 04 the second sec		$A\hat{P}X + P\hat{A}X = 90^{\circ}$	01			25	02	04
AB \perp PQ 04 (iii) In the APX and AQX 01 PX = XQ (because AB \perp PQ) 01 AX = AX (common side) 01 AX = AX (common side) 01 AX = AX (common side) 01 APX AQX (S.A.S) 01 AP = AQ 04 10 10 11. Rough diagram 02 Draw AC = 6cm 02 40° 01 Draw AB \perp AC 01 Triangle 01 AC scale length 01 5.2 cm \pm 0.1 5 5.2 x 2 01 10.4m + 0.2 01		$A\hat{X}P = 90^{\circ}$	01					10
$PX = XQ (because AB \perp PQ) 01$ $AX = AX (common side) 01$ $A\hat{X}P = A\hat{X}Q = 90^{\circ} 01$ $APX AQX (S.A.S) 01$ $AP = AQ 04$ 10 $11. Rough diagram 02$ $Draw AC = 6cm 02$ $40^{\circ} 01$ $Draw AB \perp AC 01$ $Triangle 01$ $AC scale length 01$ $5.2 cm \pm 0.1$ $5.2 x \ 2 \qquad 01$ $10.4m + 0.2 \qquad 01$		AB L PQ		04				
$AX = AX$ (common side) 01 $A\hat{X}P = A\hat{X}Q = 90^{\circ}$ 01 APX AQX (S.A.S) 01 $AP = AQ$ 04 10 04 10 04 11 Rough diagram 02 $Draw$ $AC = 6cm$ 02 40° 01 01 $Draw$ $AB \perp AC$ 01 $Triangle$ 01 01 AC scale length 01 $5.2 \text{ m} \pm 0.1$ $5.2 \text{ m} 2$ 01 $10.4m + 0.2$ 01 01		(iii) In the APX and AQX						
$A\hat{X}P = A\hat{X}Q = 90^{\circ}$ 01 APX AQX $(S.A.S)$ $AP = AQ$ 04 $11.$ Rough diagram 02 $Draw$ $AC = 6cm$ 02 40° 01 $Draw$ AE AO° 01 $Draw$ AE $Draw$ AE AO° 01 $Draw$ AE AC $o1$ AC $o1$ AC $o1$ $5.2 cm \pm 0.1$ 01 $5.2 x 2$ 01 $10.4m + 0.2$ 01		$PX = XQ$ (because AB \perp PQ)	01					
APX AQX (S.A.S) 01 04 $AP = AQ$ 04 10 11. Rough diagram 02 01 $Draw$ AC = 6cm 02 01 40^{0} 01 01 $Draw$ AB AC 01 $Draw$ AB AC 01 AC scale length 01 $5.2 \text{ m} \pm 0.1$ $5.2 \text{ m} \pm 0.1$ $10.4 \text{ m} \pm 0.2$			01					
$AP = AQ$ 04 1011.Rough diagram Draw AC = 6cm02 02 40° 40° 01 Draw AB \perp ACDraw AB \perp AC01 TriangleAC scale length01 5.2cm \pm 0.1 5.2 x 2 10.4m \pm 0.2		$A\hat{X}P = A\hat{X}Q = 90^{\circ}$	01					
III Rough diagram 02 Draw AC = 6cm 02 40° 01 Draw AB \perp AC 01 Triangle 01 AC scale length 01 $5.2 \text{ cm} \pm 0.1$ 01 $5.2 \text{ x } 2$ 01 $10.4\text{m} + 0.2$ 01		APX AQX (S.A.S)	01					
11.Rough diagram02Draw AC = 6cm02 40^{0} 01Draw AB \perp AC01Triangle01AC scale length01 $5.2 \text{ cm} \pm 0.1$ 01 $5.2 \text{ x } 2$ 01 $10.4 \text{ m} + 0.2$ 01		AP = AQ						
Draw $AC = 6cm$ 02 40^{0} 01 Draw $AB \perp AC$ 01 Triangle 01 AC scale length 01 5.2 cm ± 0.1 01 5.2 x 2 01 10.4m + 0.2 01				10				
Draw $AC = 6cm$ 02 40^{0} 01 Draw $AB \perp AC$ 01 Triangle 01 AC scale length 01 5.2 cm ± 0.1 01 5.2 x 2 01 10.4m + 0.2 01	11	Rough diagram	02					
40^{0} 01 Draw AB \perp AC 01 Triangle 01 AC scale length 01 $5.2 \text{ cm} \pm 0.1$ 01 $5.2 \text{ x } 2$ 01 $10.4 \text{m} + 0.2$ 01	11.							
Draw AB \perp AC 01 Triangle 01 AC scale length 01 $5.2 \text{ cm} \pm 0.1$ 1 $5.2 \text{ x } 2$ 01 $10.4\text{m} + 0.2$ 01								
Triangle 01 AC scale length 01 $5.2 \text{ cm} \pm 0.1$ 1 $5.2 \text{ x } 2$ 01 $10.4 \text{m} + 0.2$ 01								
AC scale length 01 $5.2 \text{ cm} \pm 0.1$ 01 $5.2 \text{ x } 2$ 01 $10.4 \text{ m} + 0.2$ 01			01					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-						
5.2 x 2 01 10.4m + 0.2 01								
			01					
		10.4m + 0.2	01					
				10				
(04)								

(04)

ରରଠ ଅପାରଣ ସିଧାରୁତ ଏହିବାର ଅର୍ଥରେ ଅନ୍ଥ (mathspapers.info) ସେରିବା ଅନ୍ୟୁସେର୍ଶତ ତ୍ରରାଠାର୍ଶବା