

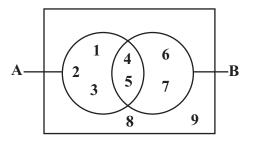
PROVINCIAL DEPARTMENT OF EDUCATION NORTH WESTERN PROVINCE

THIRD TERM TEST - 2019 MATHEMATICS - I

Grade 10

Two Hours

Name / Index No. :

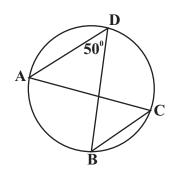

• Answer all questions on this paper itself.

• Each questions carries two marks in Part A and 10 marks for each questions in Part B.

PART - A

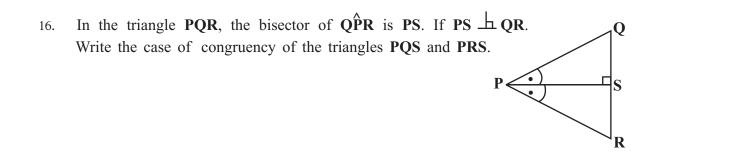
01. If $4.2 \times 4.2 = 17.64$ and $4.3 \times 4.3 = 18.49$, find the value of $\sqrt{18}$, to the first approximation.

- 02. If custom duty of **40%** is charged when an electric equipment worth **Rs. 15 000** is imported, find the amount has to be paid as duty.
- 03. According to the venn diagram, write the set of $\mathbf{A}' \mathbf{B}$.



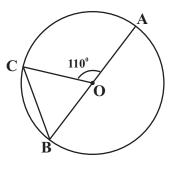
04. Write lg 7 = 0.8451 in index form.

05. A sector OAB which was cut from a circle with centre O is given in the diagram. Find the circumference of the circle which it was cutting down.
06. Find the value of 'a'.


- 07. The mean of the deviation of a frequency distribution is **-3** and its assumed mean is **85**. Find the actual mean of the frequency distribution.
- 08. Simplify, $\frac{1}{2x} \frac{1}{5x}$
- 09. In an arithmatic progression the first term is **3** and the common difference is **2**. If its last term is **31**, find the number of terms in the progression.
- 10. Write 2 positive integers which satisfy the inequality of $2x-4 \le 1$.
- 11. **X**, **Y** and **Z** are the three points on the circle with centre **O**. According to the given data, find the value of '*a*'. **X** $\begin{pmatrix} z \\ 0 \\ 0 \\ \end{pmatrix}$ **Y**
- 12. Put '**v**' mark in front of each correct statement and '**x**' mark in front of each incorrect statement.
 - Diagonals of a parallelogram are equal in length.
 - In any parallelogram, opposite angles are supplementary.
 - In a rhombus all the sides are equal in length.

13. Find the value of \hat{ACB} .

14. If the gradient of the given straight line is 3, write its equation in the form of y = mx + c.

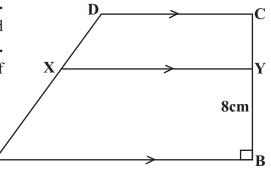

15. Factorize. $a^2 - 2a - 15$

17. Without solving the following simultaneous equations, find the value of x+y.

3x - y = 2x + 5y = 10

18. The centre of the given circle is **O**. Find the value of \mathbf{BCO} .

(0, 2)

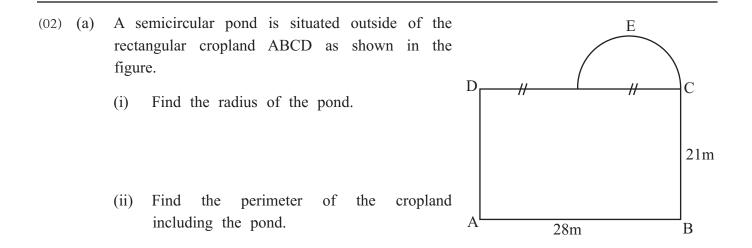

 $\rightarrow x$

19. The volume of a triangular prism is **450cm**³. If the area of the triangular face of it is **30cm**², find the length of the prism.

- 20. Find the L.C.M. of following algebraic terms, $2x, 3x^2, xy$
- 21. **AB** is a chord of the given circle. **OX** is the perpendicular drawn to **AB**. If AB = 16cm and OX = 6cm, find the radius of the circle.

22. The speed of a vehicle is 54 kmh^{-1} . Find the speed of it in ms⁻¹.

- 23. In a parcel there are orange flavored toffees and strawberry flavored toffees. Out of them 7 are orange flavored. When taking a toffee from the parcel randomly, the probability of obtaining an orange flavored toffee is $\frac{1}{3}$. Find the number of strawberry flavored toffees in the parcel.
- 24. Two men complete a certain task within a day. Three women complete the same task within a day. Find the number of days needed for 4 men to complete the task which completed by 5 women during 6 days.
- 25. In the trapezium shaped sheet ABCD, BY = 8cm. There is a hole such that 8cm away from AB and equaidistance from the edges of AB and AD. Using the knoweldge of loci, find the location of the hole and name it as P.



0

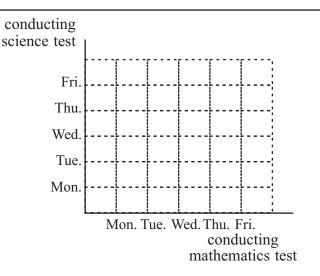
PART - B

(01) (a) Simplify. (i) $\frac{3}{5} + \frac{1}{5} \times \frac{2}{3}$ (ii) $2\frac{1}{2}$ of $\frac{3}{5} - \frac{3}{8}$

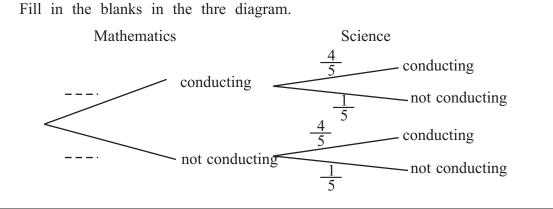
- (b) Amaya ate $\frac{3}{8}$ of chocolate balls from a parcel received on her birthday. She gave $\frac{2}{5}$ of the remaining to his grand father and rest for her mother.
 - (i) Find the number of chocolate balls received by her grand father, as a fraction of total number of chocolate balls.
 - (ii) If the number of chocolate balls received by her mother is 6, find the total number of chocolate balls in the parcel at the beginning.

(iii) Find the area of the pond.

- (iv) If an extent of land is newly added to cultivate 'Gotukola', such that the cropland is being square shaped and the pond is included to the cropland. Draw the extent of land newly added in the above diagram.
- (v) Find the area of the extent of land which was cultivated 'Gotukola'.

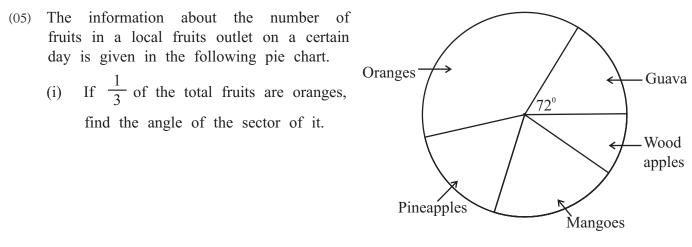

- (03) To strat a batik saree manufacturing business, Mr. Thilakawardhana takes a loan of Rs.500 000 on annual simple interest rate of 12% promissing to settle the loan in one year.
 - (i) Find the interest he has to paid at the end of the year.
 - (ii) The production cost of a saree is Rs. 2400. Find the price should be marked to get a 50% profit from a saree.
 - (iii) When selling a saree, if Rs. 180 discount is given. Find the discount percentage.
 - (iv) Find the profit obtained by him when selling a saree.

(v) In the first year, if he produced 1000 sarees and sold them, find the remaining amount after paying the loan.


(04) (a) An incomplete grid relevant to conducting the monthly test of mathematics and science subjects in a certain week (without holidays) is given below.

(i)

(i) Complete the grid relevant to the sample space.



- (ii) Find the probability of conducting both tests in a same day.
- (iii) Represent the event of conducting mathematics test on Wednesday and Science test on a day after it, in the grid and find the probability of it.
- (b) The tree diagram relevant to conducting the mathematics test on Wednesday and Science test on another day in the week is given below.

07

(ii) Find the probability relevant to conducting the mathematics test on Wednesday and Science test on another day.

- (ii) On that day there were 288 guava, find the total number of fruits in the fruit outlet.
- (iii) If the number of wood apples is 192 and the number of oranges is equal to the number of pineapples. Find the number of pineapples in the fruit outlet on that day.
- (iv) On that day the number of sold fruits is 360. Out of them 90 were oranges. Find the angle of the sector for mangoes, in the newly drawn pie chart to represent the remaining number of fruits.

PROVINCIAL DEPARTMENT OF EDUCATION NORTH WESTERN PROVINCE

THIRD TERM TEST - 2019 MATHEMATICS - II

Grade 10

Three Hours

Name / Index No. :

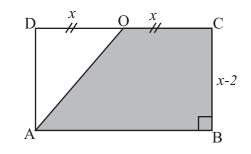
- Answer ten questions selecting five questions from part A and five questions from part B.
- Each questions carries 10 marks.
- The volume of a right circular cylinder with base radius r and height h is $r^{2}h$.

Part - A

- (01) The assessed annual value of a certain business institution which lies within the limits of a certain urban council is Rs. 350 000. The owner of the institution rents out it for a monthly rent of Rs. 8000 each and takes the annual rent at once. After paying the rates for the 1st quarter from it, Rs. 92 500 was remained.
 - (i) Find the annual rates percentage charge by the urban council
 - (ii) He buy meterials for reparing the house. He spent 60% of the above remained amount for the materials and VAT. If the VAT percentage is 15%.
 - (a) Find the amount spent for reparing the house.
 - (b) Find the value of the bill.
- (02) An incomplete values of table prepared to draw the graph of the function $y = 5 x^2$ is given below.

X	-3	-2	-1	0	1	2	3
у	-4	1	4		4	1	-4

- (a) Finding the value of y when x = 0, draw the graph of the above function using the scale of 10 small divisions as one unit along both x axis and y axis.
- (b) Using the graph,
 - (i) Write the co-ordinates of the vertex.
 - (ii) Write the range of values of x for which the function increases positively.
 - (iii) When the above graph is moving two units down the y axis, write the equation of the graph obtained.

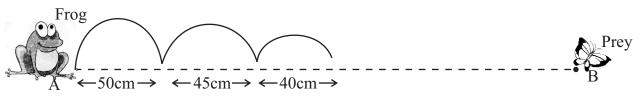

(03) (a) Solve

$$\frac{2}{x-5} - \frac{3}{x} = 0$$

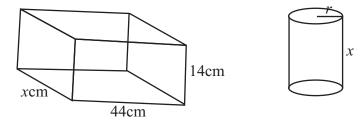
- (b) A certain amount of vessels with the volume of 50ml and 75ml are completely filled using 6 *l* of water. The number of vessels with 50ml volume is 70 greater than the number of vessels with 75ml volume. By taking the number of vessels with 75ml volume as *x* and the number of vessels with 50ml volume as *y*, build up two simultaneous equations and by solving them find the number of vessels with 75ml volume and 50ml volume separately.
- (04) The following table has been prepared using the number of beads collected by 50 students in a game of collecting beads held in a certain pre-school.

No. of beads	0 - 8	9 - 17	18 - 26	27 - 35	36 - 44	45 - 53	54 - 62
No. of students	5	7	10	13	12	2	1

- (i) How much can be the minimum number of beads collected by the winning students.
- (ii) Find the modal class of this distribution.
- (iii) Using a suitable assumed mean or any other method, find the mean number of beads collected by a student to the nearest whole number.
- (iv) Write the number of students who collected less number of beads than the mean number of beads as a percentage of total number of students.
- (05) In the rectangle ABCD, the mid point of DC is O, DO = x and BC = x 2. If the area of the trapezium ABCD is 180cm², build up a quadratic equation for the area of the trapezium and by solving it find the area of the triangle AOD.

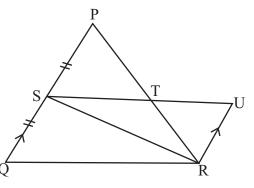


(06) PQ is a vertical post erected on a level horozontal ground. Supun who standing on point A in the level ground observes a bird on the top of the post with the angle of elevation of 55°. From that place Supun moves to the point B which is 12m away from point A and again observes the bird on the top of the post with the angle of elevation 25°.


- (i) Copy the given rough diagram in your answer script and include the above information in it. (neglet supun's height)
- (ii) Taking the scale of 1cm 2m, Draw a scale diagram and find the height of the vertical post PQ.
- (iii) Find the distance from the foot of the post to the point B.
- (iv) Supun moves 8m towards the post from B and reaches to the point C. Represent the angle of depression of the point C from the point Q in the scale diagram and show that it is greater than 40° .

(07) The following figure represents how a frog in point A reaches to a prey in point B along a linear path.

The frog reaches to the prey by leaping 50cm in the first leap, 45cm in the second leap, 40cm in the third leap.... etc.,

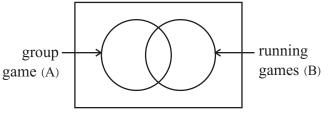

- (i) Show that the distance leaped by the frog in each leaps are lying in an arithmetic progression.
- (ii) Using the formula, find the distance leaped by the frog in 7th leap.
- (iii) As above, if the frog reaches in 9 leaps to the prey, find the distance between A and B.
- (iv) After taking the prey, if the frog again reaches to the point A along the same route with 10 equal leaps. Find the distance of frog's one leap.
- (08) (a) A right circular solid cylinder of base radius r and height x is made out of the metal obtained by melting a solid metal cuboid with length, breadth and height of 44cm, x cm and 14cm respectively and without any westage of metal. Find the radius of the cylinder.

(b) Find the value using the logarithmic tables.

- (09) Using only a straight edge with a cm/mm scale and a pair of compasses,
 - (i) Construct a circle of radius 5cm and name its centre as O.
 - (ii) Construct the chord AB of 6cm and construct a perpendicular to AB from O.
 - (iii) Construct the chord XY such that 7cm away from AB and parallel to AB.
 - (iv) Construct the triangle ABC such that $BAC = 60^{\circ}$ and the point C lies on XY. Then measure and write the length of AC.

- (10) In the given diagram, SQRU is a parallelogram. PQR is an isosceles triangle such that PR = RQ. The mid point of PQ is S.
 - (i) Show that T, is the mid point of PR,
 - (ii) Show that PSRU is a parallelogram.
 - (iii) Find the value of \hat{SRU} .
 - (iv) Write the special name that can be identified PSRU.

70


R

В

Q

- (11) (a) AB is a diameter of the circle with centre O. The chord CD intersects AB at P as shown in the figure. According to the given data. Find the value of following angles.
 - (i) BÔC
 - (ii) BDC
 - (iii) ÂĈB
 - (iv) ABD
 - (v) ÔĈP
 - (b) The chords PQ and RS intersect at X. If PO = RO show that PQ = RS.

(12) In a certain sports training pool there are 40 players. Out of then 23 are trained for team games and 16 are trained for running games 14 players are trained for other games except the above two games.

- (i) Copy the given venn diagram on to your answer sheet and include the above information.
- (ii) Find the number of players who trained both group and running games.
- (iii) Find n(A B').
- (iv) Due to an injury, 3 players who trained only running games left the pool. Draw a venn diagram to represent the remaining players and include the information on it.

සියලුම හිමිකම ඇවිරිණි. / All Righ	ts Reserved වයඹ පළාත් අර Department of P තෙවන වාර පරිස	ධනාපන දෙපාර්තමේන්තුව rovincial Education - NWP හෙය - 10 -11 ලේහ - 2019 est - Grade 10 -11 - 2019	ා දෙපාවනමේන්තුව Department of Provincial Education ත දෙපාවනමේන්තුව Department of Provincial Education හ දෙපාවනමේන්තුව Department of Provincial Education ත දෙපාවනමේන්තුව Department of Provincial Education ක දෙපාවනමේන්තුව Department of Provincial Education
	at of Provincial Educat Third Term T		න දෙපාරිතමේන්තුව Depart හි දින්න විටි ධි Factation න දෙපාරිතමේන්තුව Department of Provincial Education
විෂයය Subject		විභාග අංකය Index No.	
විභාග ශාලාවෙන් පිටතට ගෙනයාම තහ	නම. Not to be removed from the Exam	ination Hall.	

Gra	de	10
014	- u u	T C

Third Term Test - 2019

Mathematics

Answer Sheet										
	Paper I - A									
01.	4.2		02	21.	10cm		02			
02.	Rs. 6000		02		$6^2 + 8^2 = OB^2 / x B = 8cm$	01				
	$\frac{40}{100}$ x 15 000	01		22.	15ms ⁻¹		02			
03.	{6,7}		02		$54 \times \frac{5}{18}$ or $\frac{54 \times 1000}{60 \times 60}$	01				
	$10^{0.8451} = 7$			23.	14		02			
04.			02		21	01				
05.	176cm 22 x 8	01	02	24.			02			
06.	60°		02		$\frac{2 \times 5 \times 6}{4 \times 3}$	01				
	$a + 75^{\circ} + 45^{\circ} = 180^{\circ}$	01		25.	p		02			
07.	82		02							
	85 - 3	01								
08.	$\frac{3}{10x}$		02				50			
	$\frac{5}{10x} - \frac{2}{10x}$	01								
		0.1			Paper I - B					
09.	$31 = 3 + (n - 1) \ge 2$ n = 15	01 01	02	01	(a) (i) $\frac{3}{5}$ $\frac{2}{15}$	01				
10.	1, 2		02	011						
	$x \leq 2 \frac{1}{2}$	01			$\frac{11}{15}$	01	02			
11.	$a = 40^{\circ}$		02		(ii) $\frac{5}{2}$ of $\frac{3}{5}$ $\frac{3}{8}$	01				
	$x \hat{z} y = 90^{\circ} \text{ or } o \hat{z} y = 50^{\circ}$	01			$\frac{3}{2} \times \frac{8}{3}$	01				
12.	(i) × for 3 correct answers		02		4		02			
	(ii) \star for 2 correct answers	01				01	03			
13.	(iii) ✓ 50 [°]		02		(b) (i) $\left(1 - \frac{3}{8}\right)$ of $\frac{2}{5}$	01				
	y = 3x + 2		02		$\frac{5}{8}$ of $\frac{2}{5}$ for $\frac{5}{8}$	01				
15.	(a - 5)(a + 3)	1+1	02		$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
16.	A. A. S.		02		4 4	01	02			
17.	x + y = 3		02		(ii) $1 - \left(\frac{3}{8} + \frac{1}{4}\right)$					
	4x + 4y = 12	01								
18.	55°		02		$\frac{3}{8}$	01				
	$\frac{110}{2} \text{or} OBC = 55^{\circ}$	01			$\frac{6 \times 8}{3}$	01				
19.	15cm	01	02		3	01	03			
	450 30	01			10		10			
20.	$6x^2y$		02							

Grade 10

Third Term Test - 2019

Mathematics

02.			01	05.	(i) $360^{\circ} x \frac{1}{3}$	01	
	(ii) $\frac{1}{2} \times 2 \times \frac{22}{7} \times 7$	01			120°	01	02
	22 m	01			(ii) $\frac{288}{72} \times 360$	01	
	28 + 21 + 22 + 14 + 21	01			1440	01	02
	106 m	01	04		(iii) 4 [°]	01	
	(iii) $\frac{1}{2} \times \frac{22}{7} \times 7 \times 7$	01			48°	01	
	77 m^2	01	02		60°	01	
	(iv)				240°	01	04
					or		
	21m		01		any other method (iv) 150	01	
	28m				(10) 130 50°	01	02
	(vi) $28 \times 7 = 196 \text{m}^2$	01			50	01	10
	$196 - 77 = 119 \text{m}^2$	01	02		Paper II - A		
			10				
03.	(i) 500 000 x $\frac{12}{100}$	01		01.		01	
	100 Rs. 60 000	01	02		Rs. 96 000 96 000 - 92 500	01 01	
	(ii) $2400 \text{ x} \frac{150}{100}$	01			Rs. 3500	01	
	100 Rs. 3600	01	02		3500 x 4		
		01	02		Rs. 14 000	01	
	(iii) $\frac{180}{3600} \ge 100$				14 000 x 100	01	
	5% (iv) 3600 - (2400 + 180)	01 01	02		350 000	01	
	Rs. 1020	01	02		4%	01	06
	(v) Rs. 1 020 000	01			(ii) (a) $\frac{60}{100}$ x 92 500	01	
	Rs. 460 000	01	02		Rs. 55 500	01	02
			10		(b) 55 500 x $\frac{85}{100}$	01	
04.	(a) (i) for correct grid		02		100 Rs. 47 175	01	02
	(ii) for $\frac{5}{25}$ or $\frac{1}{5}$		02				10
	(iii) for event	01		02.	(a) 5	01	
	$\frac{2}{25}$	01	02		correct co-ordinate plane	01	
	(b) (i) $\frac{1}{5}$ conducting				for correct points	01	04
		1+1	02		smooth curve $(0, 5)$	01	04
	$\frac{4}{5}$ not conducting				(b) (i) (0, 5) (ii) $-2.2 < x < 0$		02 02
	-		02		(ii) $-2.2 < x < 0$ (iii) $y = 3 - x^2$		02
	(ii) $\frac{4}{25}$		10		$(m) y J^{-} \lambda$		10

Grade 10

Third Term Test - 2019

Mathematics

Paper II - A a) $\frac{2x - 3x + 15}{x (x - 5)} = 0 \text{ or}$ for $2x - 3 (x - 5)$ $-x + 15 = 0$ $x = 15$ b) $y - x = 70$ $75x + 50y = 6000$ for two equations for equaling the coefficient and $y = 90$ substitution $x = 20$ i) 54 ii) 27 - 35 iii) Mid values $4, 13, 22, 31, 40, 49, 58$ $fx \text{ or } fd \text{ colum}$ $fx = 1370 \text{ or } fd = 180$ 27.4	01 01 01 01	04 06 10 01 01	07.	(iii) 2.9 x 2 = 5.8m (iv) for marking the angle of depression 41° > 40 Paper II - B (i) difference between the successive terms is equal (ii) Tn = a + (n - 1)d = 50 + (7 - 1) x 5 = 20cm (iii) Sn = $\frac{n}{2}$ {2a + (n-1)d}	01 01 01 01 01 01 01	01 02 10 01 03
x = 15 b) $y - x = 70$ 75x + 50y = 6000 for two equations for equaling the coefficient and y = 90 substitution x = 20 i) 54 ii) 27 - 35 iii) Mid values 4, 13, 22, 31, 40, 49, 58 fx or fd colum fx = 1370 or fd = 180	01 01 01 01 01 01 01 01	06 10 01	07.	$41^{\circ} > 40$ (i) difference between the successive terms is equal (ii) Tn = a + (n - 1)d = 50 + (7 - 1) x 5 = 20cm (iii) Sn = $\frac{n}{2}$ {2a + (n-1)d}	01 01 01 01 01	10 01
for equaling the coefficient and y = 90 substitution x = 20 i) 54 ii) 27 - 35 iii) Mid values 4, 13, 22, 31, 40, 49, 58 fx or fd colum fx = 1370 or fd = 180	01 01 01 01 01	10 01	07.	(i) difference between the successive terms is equal (ii) Tn = a + (n - 1)d = 50 + (7 - 1) x 5 = 20cm (iii) Sn = $\frac{n}{2}$ {2a + (n-1)d}	01 01 01	
y = 90 substitution x = 20 i) 54 ii) 27 - 35 iii) Mid values 4, 13, 22, 31, 40, 49, 58 fx or fd colum fx = 1370 or fd = 180	01 01 01 01	10 01	07.	successive terms is equal (ii) Tn = a + (n - 1)d = 50 + (7 - 1) x 5 = 20cm (iii) Sn = $\frac{n}{2}$ {2a + (n-1)d}	01 01 01	
ii) 27 - 35 iii) Mid values 4, 13, 22, 31, 40, 49, 58 fx or fd colum fx = 1370 or $fd = 180$	02			(iii) Sn = $\frac{n}{2}$ {2a + (n-1)d}	01	
fx = 1370 or fd = 180				$= \frac{9}{2} \{2 \times 50 + (9-1) \times -5\}$		
27.4	01 01	0.6		$= \frac{9}{2} \{100 - 40\}$ $= \frac{9}{2} \times 60$	01 01	
iv) $\frac{22}{50} \times 100$	01 01	06		= 270 cm	01	04
44%	01	02 10		(iv) 270 10 27cm	01 01	02 10
$\frac{(2x+x)}{2} (x-2) = 180$	01		08.	(a) $r^{2}h = 44 \times 14 \times x$ $\frac{22}{7} \times r^{2} \times x = 44 \times 14 \times x$	02	
2	01			$22 \ge x$	01	
$x^{2} - 2x - 120 = 0$ (x - 12) (x + 10) = 0	01 02			r = 14 cm (b) lg 7.843 x 10 ² - (lg 6.23 x 10 ¹	01 01 01	05
12 - 2 = 10 $\frac{1}{2} \times 10 \times 12$	01 01			2.8945 - (1.7945 + 0.9243) 2.8945 - 2.7188 Antily 0.1757	01 01 01	
60cm ²	01	<u>10</u> <u>10</u>		1.498	01	05 10
 i) representing 55°, 25°, 12m ii) correct angles 6cm 	01 01 01 01 01	02	09.	 (i) circle, centere O (ii) for chord for perpendicular (iii) for construction (iv) constructing angle triangle 	1+1 01 02 01 01 01	02 03 02 03
	$\frac{3x}{2} (x - 2) = 180$ $3x^{2} - 6x = 360$ $x^{2} - 2x - 120 = 0$ (x - 12) (x + 10) = 0 x = 12 or x = -10 12 - 2 = 10 $\frac{1}{2} \times 10 \times 12$ 60 cm^{2} i) representing 55°, 25°, 12m i) correct angles 6 cm scale diagram 4.2 cm	$\frac{3x}{2} (x - 2) = 180$ $3x^{2} - 6x = 360$ $x^{2} - 2x - 120 = 0$ $(x - 12) (x + 10) = 0$ $x = 12 \text{ or } x = -10$ $12 - 2 = 10$ 01 $\frac{1}{2} x 10 x 12$ 01 01 01 01 01 01 01 01	$\frac{3x}{2} (x-2) = 180$ $3x^{2} - 6x = 360$ $x^{2} - 2x - 120 = 0$ $(x - 12) (x + 10) = 0$ $x = 12 \text{ or } x = -10$ $12 - 2 = 10$ 01 $\frac{1}{2} x 10 x 12$ 01 01 $\frac{10}{10}$ 10 10 10 10 10 10 10 10	$\frac{3x}{2} (x - 2) = 180$ $3x^{2} - 6x = 360$ $x^{2} - 2x - 120 = 0$ $(x - 12) (x + 10) = 0$ $x = 12 \text{ or } x = -10$ $12 - 2 = 10$ 01 $\frac{1}{2} x 10 x 12$ 01 $\frac{10}{10}$ 10 10 10 02 01 01 01 02 03 09 09 09	$\frac{3x}{2} (x - 2) = 180$ $3x^{2} - 6x = 360$ $x^{2} - 2x - 120 = 0$ $(x - 12) (x + 10) = 0$ $x = 12 \text{ or } x = -10$ $12 - 2 = 10$ $1\frac{1}{2} \times 10 \times 12$ 01 $\frac{1}{2} \times 10 \times 12$ 01 $\frac{10}{10}$ $10 \text{ representing 55^{\circ}, 25^{\circ}, 12m}$ 10	$\frac{3x}{2} (x - 2) = 180$ $3x^{2} - 6x = 360$ $x^{2} - 2x - 120 = 0$ $(x - 12) (x + 10) = 0$ $x = 12 \text{ or } x = -10$ $12 - 2 = 10$ 01 $\frac{1}{2} x 10 x 12$ 01 $\frac{10}{10}$ $\frac{1}{2} x 10 x 12$ 01 $\frac{10}{10}$ $\frac{1}{2} correct angles}$ 01 01 $\frac{10}{4.2 cm}$ $4.2 cm$ $4.2 cm$ 01 01 01 01 01 01 01 01

Grade 10

Third Term Test - 2019

Mathematics

Answer Sheet

10.	(i) in the SPT and RUT SPT = TRU (Alternative angles) PST = TUR (Alternative angles) for two PTS = RTU (Vertically opposite angles) PS = UR (data) SPT RUT (A. A. S.) Corresponding elements of congruent triang PT = TR (ii) In the quadrilateral PSRU PT = TR ST = TU Corresponding elements of congruents of congruent triang PT = TR (iii) In the quadrilateral PSRU PT = TR ST = TU Corresponding elements of congruents of congruen		t trian	gles	01 01 01 01 01 01 01 01	04
	$\hat{SRU} = 90^{\circ}$				01	03
	(iv) Rectangle					01 10
11.	(a) (i) 70° (ii) 35° (iii) 90° (iv) 55° (v) 20° (b) $ORP = OPR$ (Isosceles triangles) ORP = OQS (Angles in the same segment) OPS = OSR (Angles in the same segment) OQS = OSQ OQ = OS PO = RO (Data) PO + OQ = RO + OS PQ = RS	01 01 01 01	01 01 01 01 01 05 10			
12.	(i) A 10 13 14 B (ii) 13 (iii) 10 (iv) A 10 13 14 B	01 01 01 01 01 01 01	04 01 02 03 10			

(04)

ରରଠ ଅପାରଣ ସିଧାରୁ ଦାଣୀର ଅର୍ଣର ଅନ୍ତ (mathspapers.info) ସେରିର୍ଷ ଅନ୍ୟୁଟେର୍ଷ ଭ୍ରେଠାର୍ଯ୍ୟର